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Structure of 2-D and 3-D Turbulent Boundary Layers with Sparsely Distributed Roughness Elements
Jacob George
ABSTRACT

The present study deals with the effects of sparsely distributed three-dimensional elements on
two-dimensional (2-D) and three-dimensional (3-D) turbulent boundary layers (TBL) such as those
that occur on submarines, ship hulls, etc. This study was achieved in three parts: Part | dealt with the
cylinders when placed individually in the turbulent boundary layers, thereby considering the effect ofa
single perturbation on the TBL; Part 2 considered the effects when the same individual elements were
placed in a sparse and regular distribution, thus studying the response of the flow to a sequence of
perturbations; and in Part 3, the distributions were subjected to 3-D turbulent boundary layers, thus
examining the effects of streamwise and spanwise pressure gradients on the same perturbed flows as
considered in Part 2. The 3-D turbulent boundary layers were generated by an idealized wing-body
junction flow.

Detailed 3-velocity-component Laser-Doppler Velocimetry (LDV) and other measurements
were carried out to understand and describe the rough-wall flow structure. The measurements include
mean velocities, turbulence quantities (Reynolds stresses and triple products), skin friction, surface
pressure and oil flow visualizations in 2-D and 3-D rough-wall flows for Reynolds numbers, based on
momentum thickness, greater than 7000. Very uniform circular cylindrical roughness elements of
0.38mm, 0.76mm and 1.52mm height (k) were used in square and diagonal patterns, yielding six
different roughness geometries of rough-wall surface. For the 2-D rough-wall flows, the roughness

Reynolds numbers, k*, based on the element height (k) and the friction velocity (U ), range from 26
to 131. Results for the 2-D rough-wall flows reveal that the velocity-defect law is similar for both
smooth and rough surfaces, and the semi-logarithmic velocity-distribution curve is shifted by an
amount AU/U, depending on the height of the roughness element, showing that AU/U., is a function

of k*and the geometry. For the 3-D flows, the data show that the surface pressure gradient is not
strongly influenced by the roughness elements. Higher roughness elements cause greater turbulence
intensities near the wall, which cause the pressure-driven mean flow three-dimensionality to propagate
or diffuse more rapidly from the wall region. In general, for both 2-D and 3-D rough-wall TBL, the
differences between the two roughness patterns (straight and diagonal), as regards the mean velocities
and the Reynolds stresses, are limited to about 3 roughness element heights from the wall.

For the single elements, the values of k* range from 23 to 92. The study on single elements
revealed that the separated shear layers emanating from the top of the elements form a pair of counter
rotating vortices that dominate the downstream flow structure. These vortices, termed as the
roughness top vortex structure (RTVS), in conjunction with the mean flow, forced over and around the
elements, are responsible for the production of large Reynolds stresses in the neighborhood of the
element height aft of the elements. The motions associated with the RTVS are responsible for the
transport and diffusion of these large stress levels away from the regions where it is produced.
Further, large downwash velocities in the common flow region of the vortex pair leads to increased
wall shear. When these elements are placed in a distribution, the effects of RTVS are not apparent.
The roughness elements create a large region of back flow behind them which is continuously
replenished by faster moving fluid flowing through the gaps in the rough-wall. The fluid in the back
flow region moves upward as low speed ejections where it collides with the inrushing high speed flow,
thus, leading to a strong mixing of shear layers. This is responsible for the generation of large levels
of turbulent kinetic energy (TKE) in the vicinity of the element height which is transported, primarily,
by turbulent diffusion. As regards the 3-D rough-wall TBL, the effect of flow three-dimensionality 1s
seen in the large skewing of the distributions of mean velocities, Reynolds stresses and TKE, aft of the
elements. In general, the regions of large TKE production-rates seem to propagate in the direction of
the local velocity vector at the element height. The data-sets also enable the extraction of the turbulent
flow structure to better describe the flow physics of these rough-wall turbulent boundary layers.
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Nomenclature
Roman
2-D TBL
3-D TBL

3CLDV
A4, 4,

A]

A

inner

outer

GGy
Ca
Cd,form
Cd,skin
Cf

Cf, outer C

f, inner

C

2

CV

CVIi

Two-Dimensional Turbulent Boundary Layers
Three-Dimensional Turbulent Boundary Layers
Three component Laser Doppler Velocimeter

Projected frontal area of the roughness element

G- G
Structural parameter, = e

w+vi +w

Projected wall area downstream of the single element:
Inner wake region

Projected wall area downstream of the single element:
Outer regions where there is no wake influence

I+

N

Windward wetted surface area of the roughness element

Boundary Layers

Correlation coefficient between the data rate fluctuations and the fluctuations
in the magnitudes of velocity

Also, Convection, of TKE or or Reynolds stresses

Also, intercept in the log-law of the wall for smooth-wall TBL, has a value of
5.1

Coefficients for curve fit of skin friction velocity
Drag coefficient defined as AD/ (1/2)pU?A, where, AD is the total drag due
to the single element

Form drag coefficient
Skin friction component of drag coefficient

Skin friction coefficient

Average skin friction coefficients in the outer region and inner regions (wake)
within the control volume (Single elements)

P-l’ref

IJref

Coefficient of pressure,

oref =
Control volume used in the calculation of form drag due to single elements

Control volume used in the calculation of the skin friction component of drag
due to single elements. The width (along spanwise direction) of CV1 is twice
as much as that of CV with rest of the dimensions remaining unchanged.

Diameter of the cylinder, or the base diameter of the Gaussian spike
Maximum acceptable deviation in the measured data

Center to center spacing between the elements
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